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Abstract

In order to analyze the mechanical behaviors of composite materials under large deformation, the formulation of
the homogenization method is described. In this formulation, assuming that the microstructures in a local region of
the global structure are deformed uniformly and that consequently the microscopic periodicity remains in the local
region under large deformation, the microscopic deformation is precisely de®ned by the perturbed displacement and

product of macroscopic displacement gradient and microscopic coordinates. Finally, microscopic and macroscopic
equations are obtained. The above mentioned assumption of the periodicity of microstructures is experimentally
validated. The computer program is also developed according to this formulation, and the large deformation is

analyzed for the unidirectional ®ber reinforced composite material and the knitted fabric composite material. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, the composite materials are used in many engineering ®elds. The characteristics of the
composite materials depend on the microscopic architecture. Thus, micro±macro coupled problems are
becoming an important issue in such ®elds as applied mathematics, applied mechanics and
computational mechanics. Since the ®nal goal is to design the macroscopic properties and functions to
meet the requirements, the microscopic heterogeneity has been folded in equivalent macroscopic
properties so far by the rule of mixture, equivalent inclusion method using Eshelby tensor or RVE
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(Representative Volume Element) method (Hashin, 1983) etc. In 1990s, after the paper by Guedes and
Kikuchi (1990), the homogenization method is a matter of concern and interest not only in the
computational mechanics ®eld but also in the materials science ®eld.

The basic theory of the homogenization method can be found in the papers published in 1970s and
early 1980s, for instance, by Babuska (1976), Cioranescu and Paulin (1979), Sanchez-Palencia (1980),
Lions (1981), Bakhvalov and Panasenko (1989) and many applied mathematicians. Guedes and Kikuchi
(1990) has developed a new formulation of this method in a weak form and shown a guideline for
numerical analysis to engineers. Also, practical applications of this method to the analysis of composite
materials have been reported. Duvaut and Nuc (1983) applied it to the unidirectional ®ber reinforced
composite material, Lene and Leguillon (1982) considered the slip at the ®ber/matrix interface, Shkoller
and Maewal (1996) considered defective region like resin-rich region in ®ber tow, and Bigourdan et al.
(1991) as well as Takano and Zako (1995a) applied it to woven fabric composite materials. Many other
studies are also found to enhance the homogenization method to solve other problems than the above
elastic problem. Thermoelastic problem was solved by Francfort (1983), steady-state creep problem by
Aravas et al. (1995), time-dependent creep problem by Wu and Ohno (1997), elasto-plastic problem by
Jansson (1992), Terada et al. (1995, 1996) and Ghosh et al. (1996), and solid±¯uid mixture problem by
Terada et al. (1998). The authors Takano and Zako (1995b, 1996a) presented a formulation with initial
stresses and solved a large deformation problem and damage propagation problem by a step-wise linear
algorithm. In summary, the challenge to extend the homogenization method to solve various nonlinear
problems has been carried out in 1990s. However, the application of this method to large deformation
problem has remained an open problem till date. We can ®nd only few literatures on the large
deformation analysis by the homogenization method, such as a paper by Terada et al. (1995, 1996) and
another by Okada et al. (1998). In analyzing the large deformation problems, it is necessary to update
both macro- and microscopic models. However, because they did not describe the microscopic
deformation, the update of the microstructure under large deformation was not clearly discussed.

Therefore, the purpose of our study is to present a new formulation of the homogenization method
for large deformation analysis of composite materials with clear de®nition of the microscopic
deformation. Assume that the microstructures are very small compared with the global body, and are
periodically arrayed. Assume a local region such as a discretized ®nite element which is also small
compared with the global body, and assume that the microstructures are periodically arrayed in that
region. When the load is applied to the body and it is largely deformed, we assume that the periodicity
remains in the local region even after deformation as shown in Fig. 1. In this problem setting, the
homogenization method seems to be applicable to large deformation problems similar to the
conventional applications to the linear problem. In other words, the local region can be replaced to a
homogenized model. As shown in Fig. 1, in general, the deformation of the microstructures in one small
region is di�erent from that in other region. Hence, the formulation of the homogenization method
applied to large deformation problem should be carried out for the local region and the microstructures
in it. As mentioned above, we can suppose the local region is a part of the macroscopic body and it can
be replaced to a homogenized model. Using the ®nite element method (FEM) to solve the derived
partial di�erential equations, the local region is regarded as an element. If we de®ne the microstructure
element by element and update the microstructures during the large deformation for all the elements, we
can solve the large deformation problem by the micro±macro modeling and the homogenization
formulation proposed in this paper.

Experimental investigation to prove the validity of above mentioned problem setting was also
conducted for a knitted fabric composite thermoplastics. In recent years, applications of knitted fabric
composite materials are investigated, for example, to vehicle door by Kim et al. (1995) and biomaterial
by Ramakrishna et al. (1997a). Other research works on the forming processes are also found that lead
to obtain products with a variety of shapes, such as the deep-draw forming process investigated by
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Nishiyabu (1995). In such forming process, large deformation occurs both macroscopically and
microscopically. Understanding of the properties under large deformation is essential. Experimental
works to measure the mechanical properties of these materials have been reported by many researchers,
for example, Gommers et al. (1995) or Mayer et al. (1998). Ramakrishna (1997b) has proposed a cross-
over model for the knitted fabric composite material to estimate the homogenized elastic modulus,
which is one of the mechanical approaches based on the geometric information of the knitted fabrics. If
largely deformed microstructures are known by experimental observation, his model is very convenient
and e�ective. On the contrary, we take a mathematical approach, and the emphasis is put on the
numerical prediction of the large deformation of microstructures under arbitrary macroscopic boundary
conditions for arbitrary composite materials with complex microstructures.

2. Formulation

This section describes the formulation of the homogenization method applied to large deformation
problem of an elastic body. First, we describe the large deformation theory. Next, using two di�erent
coordinate systems, i.e., macroscopic coordinate X and microscopic coordinate Y, the displacement is
divided into a uniform displacement and a perturbed one caused by microstructural heterogeneity. Then,
similar to the formulation of conventional linear homogenization theory, such as using the averaging
principle, the formulation of the homogenization method applied to large deformation problem is
derived.

2.1. Large deformation theory

The equilibrium equation for a three-dimensional elastic body is written as Eq. (1). X denotes the
undeformed con®guration at the initial time.

@Pji

@Xj
� bi � 0 �1�

where P is ®rst Piola±Kirchho� stress with respect to the initial con®guration and b is the body force.
Making the time derivation of Eq. (1), and applying the virtual displacement method using the
divergence theorem, Eq. (2) is obtained. This is the principle of virtual work expressed in rate form�

O

_Pji
@dui
@Xj

dO �
�
O
dui _bi dO�

�
G
dui _ti dG 8du �2�

_b is the rate of body force and _t is the rate of traction on the boundary G: The constitutive equation is
expressed by

_Sij � Cijkl
_Ekl �3�

where _Sij is the rate of second Piola±Kirchho� stress and _Ekl is the rate of Green±Lagrange strain. By
substituting Eq. (3) into Eq. (2) and applying the updated Lagrangian formulation, we obtain the
following equation (4)�

O

@dui
@Xj

ÿ
Cijkl � dikSjl

�@ _uk
@Xl

dO �
�
O
dui _bi dO�

�
G
dui _ti dG 8du �4�

The stress Sjl in Eq. (4) can be approximated by the stress at the initial state of each step. At the ®rst
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step, Eq. (4) becomes a linear equation, because the stress at the initial state of the ®rst step is zero. The
above equations are described only in the coordinate system X.

2.2. Displacements of global structure and microstructure

Suppose a three-dimensional elastic body is the assembly of periodic microscopic structures and
assume one local region. Also assume that the periodicity of the microstructures exists in the local
region during the deformation, and the local region can be replaced to the homogenized model. Hence,
as in Fig. 1, we consider two coordinate systems, i.e., macroscopic coordinate system X and microscopic
corrdinating system Y, which are related by the scale ratio e as follows

y � x=e �5�
x��x1, x2, x3� is written in the macroscopic coordinate system X, and y � �y1, y2, y3� in the microscopic
Y. X is used to describe the global structure as well as the local region, while Y is used to describe the
microstructure. When we assume that the microstructure is very small compared with the global
structure as well as the local region, the scale ratio e is a very small number. When the load is applied to
the body and is largely deformed, the deformation of the microstructure in one small region is di�erent
from that in the other. However, we can consider that the periodicity remains in the local region even
after deformation as shown in Fig. 1. In this case, the microstructures in that region are assumed to be
deformed uniformly. Therefore, we consider the homogenized (or macroscopic) model of that region,
and the rate of displacement in the homogenized region can be described as Eq. (6)

_uH
i �x� � _aH

ij x j � _uH
i
�0�

�
_aH
ij is constant

�
�6�

where _uH
i �x� is the rate of displacement in the homogenized model and _uH

i �0� is the rate of displacement
at the origin of the macroscopic coordinate system X (the value is described in the macroscopic
coordinate system). In this case, we can write

_aH
ij �

@ _uH
i �x�
@xj

�7�

When we consider the heterogeneity of the microstructure, the rate of real displacement _uei should be
resolved into the rate of homogenized displacement and the rate of perturbed displacement as Eq. (8)

_uei � _uH
i �x� � _u1i �x� �8�

where _u1i �x� is the perturbed term caused by the microscopic heterogeneity. Now, both of these
displacements are written in X-coordinate system. Unlike what has been assumed in other research
works, _u1i �x� is not the rate of displacement of microstructure. When we consider the order of the scale
ratio e, _u1i described in the coordinate system X is very small. Therefore, Eq. (8) could be rewritten as
Eq. (9) using the coordinate system Y as well as X.

_uei � _uH
i �x� � e _u1i �y� �9�

In Eq. (9), the ®rst term _uH
i �x� is described in the coordinate system X, while the second term _uH

i �y� is
described in the coordinate system Y. By magnifying the microscopic model with the scale ratio e, it
becomes of the same size as the macroscopic model. Still _u1i �y� is not the rate of displacement of
microstructure.

The rate of displacement of macroscopic model written in the coordinate system X is de®ned by the
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following equation

_U
macro

i �x� � _uei �x� �10�

By using Eq. (9) and knowing that e is very small, we can write as follows

_U
macro

i �x� � _uei �x� � _uH
i �x� �11�

By multiplying both sides of Eq. (5) by _aH
ij and considering the di�erence of origins of both coordinate

systems X and Y, we obtain the next relation.

_aH
ij

�
xj ÿ x y�0

j

�
� e_aH

ij yj �12�

where x
y�0
j is the position of the origin of the microscopic coordinate system Y written in the

macroscopic coordinate system X. When the origin of macroscopic coordinate system is equal to that of
microscopic coordinate system, x y�0

j is equal to zero. From the above equations, Eq. (6) can be written
in the following way

_uH
i �x� � e_aH

ij yj � _aH
ij x

y�0
j � _uH

i
�0� �13�

If we consider only the deformation of the microstructures after the uniform deformation, the rate of
displacement of the origin of the microscopic coordinate system Y is zero. Consequently, Eq. (13) yields
the next equation

_uH
i �x� � e_aH

ij yj �14�

The rate of displacement of microstructure can be written in the coordinate system Y as

_U
micro

i �y� � _uei �y� �
1

e
_uei �x� �

1

e
_uH
i �x� � _u1i �y� � _aH

ij yj � _u1i �y� �
@ _uH

i �x�
@Xj

yj � _u1i �y� �15�

The ®rst term of Eq. (15) is the value of coordinates in microscopic coordinate system multiplied by the
macroscopic displacement gradient. In summary, the original point of this formulation is the de®nition
of macro- and microscopic displacements as Eqs. (11) and (15), which are used to update the local
regions in a macroscopic sense and the microstructures in the numerical analysis.

The rate of Green±Lagrange strains in macro- and microscopic models are de®ned by Eqs. (16) and
(17). To obtain these equations, we used Eqs. (11) and (15), and also the updated Lagrangian
formulation. The quadratic term of the strain rate was supposed to be negligible. Eq. (18) denotes the
second Piola±Kirchho� stress in the microstructure. The second Piola±Kirchho� stress in global
structure is de®ned in the next section.

_E
macro

ij �x� � 1

2

 
@ _U

macro

i �x�
@Xj

� @
_U

macro

j �x�
@Xi

!
� 1

2

 
@ _uH

i �x�
@Xj

� @ _uH
j �x�
@Xi

!
�16�
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_E
micro

ij �y� � 1

2

 
@ _U

micro

i �y�
@Yj

� @
_U

micro

i �y�
@Yi

!
� 1

2

 
@

@Yj

ÿ
_aH
ikyk

�� @

@Yi

�
_aH
jkyk

�
� @ _u1i �y�

@Yj
� @ _u1j �y�

@Yi

!

� 1

2

 
@ _uH

i �x�
@Xj

� @ _uH
j �x�
@Xi

� @ _u1i �y�
@Yj

� @ _u1j �y�
@Yi

!
�17�

_S
micro

ij �y� � C e
ijkl

_E
micro

kl �y� �18�

2.3. Application of the homogenization method to large deformation problem

From Eqs. (4) and (7), we can write the next equation�
O

�
@

@Xj
d
�
uH
i �x� � eu1i �y�

��� @

@Xl

�
_uH
k �x� � e _u1k�y�

��ÿ
C e

ijkl � dikS e
jl

�
dO

�
�
O
d
�
uH
i �x� � eu1i �y�

�
_bi dO�

�
G
d
�
uH
i �x� � eu1i �y�

�
_ti dG 8duH�x�, du1�y� �19�

where

@

@Xl

�
_uH
k �x� � e _u1k�y�

�
� @ _uH

k �x�
@Xl

� e
@ _u1k�y�
@Xl

� @ _uH
k �x�
@Xl

� e
1

e
@ _u1k�y�
@Yl

� @ _uH
k �x�
@Xl

� @ _u1k�y�
@Yl

�20�

Using the averaging principle by taking the limit of e40, Eq. (19) can be separated into two equations,
i.e., Eq. (21) for the microstructure and Eq. (22) for the global structure.�

O

1

jYj
�
Y

@du1i �y�
@Yj

ÿ
C e

ijkl � dikS e
jl

� @ _uH
k �x�
@Xl

� @ _u1k�y�
@Yl

!
dY dO � 0 8du1�y� �21�

�
O

1

jYj
�
Y

@duHi �x�
@Xj

ÿ
C e

ijkl � dikS e
jl

� @ _uH
k �x�
@Xl

� @ _u1k�y�
@Yl

!
dY dO �

�
O
duH

i �x� _bi dO�
�
G
duH

i �x�_ti dG

8duH�x�
�22�

Assume the following relation, then the rate of the macroscopic uniform displacement gradient bridges
the gap between the macroscopic and microscopic scale.

_u1i �y� � ÿwkli �y�
 
@ _uH

k �x�
@Xl

!
�23�

Then, Eqs. (21) and (22) yield the following solvable equations�
Y

@du1i �y�
@Yj

ÿ
C e

ijmn � dimS e
jn

�@wklm�y�
@Yn

dY �
�
Y

@du1i �y�
@Yj

ÿ
C e

ijkl � dikS e
jl

�
dY 8du1�y� �24�
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�
O

@duH
i �x�
@Xj

@ _uH
k �x�
@X`

1

jYj
�
Y

(ÿ
C e

ilkl � dikS e
jl

�ÿ ÿC e
ijmn � dimS e

jn

�@wklm�y�
@Yn

)
dY dO

�
�
O
duH

i �x� _bi dO�
�
G
duH

i �x�_ti dG 8duH�x� �25�

wklm�y� is the characteristic displacement, which is the solution of microscopic Eq. (24). There are nine
modes of characteristic displacements because Eq. (24) tells the asymmetry with respect to k and l.
De®ne the homogenized coe�cients as follows

C H
ijkl �

1

jYj
�
Y

(
C e

ijkl ÿ
@wklm�y�
@Yn

C e
ijmn

)
dY �26�

SH
ijkl �

1

jYj
�
Y

(
dikS e

jl ÿ
@wklm�y�
@Yn

dimS e
jn

)
dY �27�

Then, macroscopic equation (25) can be simpli®ed as�
O

@duHi �x�
@Xj

�
C H

ijkl � SH
ijkl

�@ _uH
k �x�
@Xl

dO �
�
O
duH

i �x� _bi dO�
�
G
duH

i �x� _ti dG 8duH�x� �28�

By solving Eq. (28), the rate of homogenized displacement _uH
i can be obtained. Then, the perturbed term

_u1i �y� is also obtained by Eq. (23). Finally, the rate of microscopic displacement _U
micro

i �y� can be
calculated by Eq. (15), which is again the most important equation in our formulation.

The rate of the second Piola±Kirchho� stress of the global structure is described by Eq. (29). Because
the homogenized elastic tensor C H

ijkl is not symmetric with respect to k and l, the rate of the second
Piola±Kirchho� stress of the macroscopic model cannot be written in the same form as one of the
microscopic model de®ned by Eq. (18).

_S
macro

ij �x� � C H
ijkl

@ _uH
k �x�
@Xl

�29�

3. Discussion on the large deformation of the microstructures

Many composite materials have periodicity of microstructures, such as unidirectional ®ber reinforced
composites and textile composites including woven and knitted fabric composites. Therefore, the
kinematic change of the microstructure of knitted fabric composite material under uni-axial tension at
high temperature was investigated experimentally. Tensile tests in course direction, wale direction and
458 o�-axis direction were carried out. The microstructure was observed by CCD camera. The
dimension of a microscopic unit cell has the order of 1±2 mm. Fig. 2 illustrates the unit cell of knitted
fabrics. In this study, knitted fabrics made of aramid ®bers and polypropylene were used. Since the used
polypropylene is black colored, white marks were written at the cross-points of knitted fabrics so as to
trace the large deformation of the microstructures as shown in Fig. 3.

When this composite material was stretched at 443 K, because polypropylene is a thermoplastics and
also because knitted architecture allows ¯exible deformation, both the global structure and
microstructure are largely deformed as shown in Fig. 3. The large deformation of the microstructure is
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clearly observed particularly in the o�-axis tensile test, where the anisotropic principal direction changes
during the deformation for some region. This explains the necessity to consider the large deformation of
the microstructures.

It is found that the assumption of periodicity holds over the whole structure before deformation.
After large deformation (as shown in Fig. 3) in the local region of the whole structure, the periodicity
remains and the microstructures are deformed uniformly. More general and practical case is shown in
Fig. 4, which is a deep-drawn structure of the same knitted fabric composite material. In this case also
we can see the periodicity and the uniform deformation of the microstructures in a local region, except
for the corner or edge parts. This experimental fact shows that our assumption which was illustrated in
Fig. 1 is valid and that the present homogenization formulation is useful in various practical
applications.

If we want to numerically analyze these phenomena by micro±macro modeling, we cannot neglect the
change of the homogenized mechanical properties during the deformation, which is caused by the large
deformation of the microstructures. Thus, the large deformation problem of the composite materials can
be solved only if we can calculate both micro- and macroscopic displacements, update both
microstructures and the macrostructure that is an assembly of local regions, and calculate the
homogenized properties. The present formulation meets these requirements.

The deformation of the microstructure in one local region is di�erent from that in the other, as shown
in Fig. 3. The same is true for the case of deep-draw forming process. In the numerical analysis using
the discretized model by ®nite element method (FEM), we can suppose that the assumption, which is
illustrated in Fig. 1 and is validated experimentally, holds in all the ®nite elements. Therefore, we can
solve general large deformation problems by applying the present formulation element by element.
Many microstructure models must be considered and calculated in this case, but parallel computing will
be e�ective. For easier and high-speed computing, Takano et al. (1996b, 1998) have proposed a method
to use pre-calculated database of homogenized material nonlinearity.

4. Analysis examples

On the basis of the formulation in Section 2, we have developed a computer program to analyze the
mechanical behaviors of composite materials under large deformation. The derived P.D.Es are solved

Fig. 2. Unit cell of knitted fabrics.
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Fig. 3. Tensile tests of knitted fabric composite material.
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Fig. 4. Deep-drawn structure of knitted fabric composite material.

Fig. 5. Macro- and microscopic modeling by the homogenization method.
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with discretization by FEM. Fig. 5 illustrates the macro- and microscopic models by FEM. In the
developed program, eight-noded isoparametric hexagonal element is used.

The numerical analysis is carried out as follows. By homogenizing the updated microstructure at each
time step, the homogenized mechanical properties are calculated at each step. Then, using the updated
homogenized mechanical properties, macroscopic deformation is calculated. That is to say, both the
microscopic and macroscopic models are updated in every step.

Two examples are shown below for unidirectional ®ber reinforced composite material and knitted
fabric composite material. A personal computer was used for these analyses.

4.1. Application to unidirectional ®ber reinforced composite material

Fig. 6 shows the ®nite element model of the unit cell for the unidirectional ®ber reinforced plastics.
Fig. 6(a) shows the ®ber±matrix model, and Fig. 6(b) shows only the ®ber model. The mechanical
properties of ®ber and matrix used in the numerical analysis are shown in Table 1. The ®ber and matrix
are assumed to be elastic and isotropic. The ®ber volume fraction is about 50%.

The analysis of the following three cases are carried out as shown in Fig. 7.

(I) Tensile deformation in the transverse direction to the ®bers
(II) In-plane shearing deformation on the ®bers cross-section
(III) Out-plane shearing deformation on the ®bers cross-section

The results of analyses for the deformation of microscopic structure are shown in Fig. 8 about case (I),
Fig. 9 about case (II), and Fig. 10 about case (III). In uniform tensile deformation, only the matrix is
deformed but the ®ber is hardly deformed. In in-plane shearing deformation, the ®ber is rotated without
deformation by the macroscopic pure shearing deformation, then the matrix is deformed. In out-plane
shearing deformation, the cross-section of the ®ber is inclined without deformation and the surface of
the microstructure is waved.

4.2. Application to knitted fabric composite material

Suppose a microstructure model of knitted fabric composite material, as shown in Fig. 2, which
consists of ®ber bundles and matrix. The ®ber bundles are to be considered as a homogenized model
with anisotropy. Thus, we ®rst calculate the homogenized properties of the ®ber bundle using the unit
cell model similar to the previous example in Fig. 6. The ®ber volume fraction in the bundle is 60% in
this case. The mechanical properties used in this calculation is shown are Table 2. The same

Fig. 6. Finite element model of the unit cell of the unidirectional ®ber reinforced plastics.
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polypropylene with Figs. 3 and 4 is taken as matrix, and its Young's modulus is a measured value under
443 K.

The unit cell model of two-layered knitted fabric composite material is shown in Fig. 5. The geometry
of this unit cell model coincides with that in our experimental work in Figs. 3 and 4. Numerical analyses
were carried out for tensile and shearing deformation. The largely deformed microstructures are shown
in Fig. 11. Approximately 30% macroscopic strain was applied. Since both, force and displacement on
the boundary of the unit cell are unknown but are solved in the homogenization method using only the
periodic condition, the microscopic deformation is very complex, similar to the previous example. As
mentioned in the introduction, the de®nition of the microscopic deformation and the update of the
microstructure in the large deformation analysis are highlighted in this paper, but strain and stress are
also obtained and considered in the calculation in, for instance, Eq. (27).

The comparison between the numerical analysis and the experimental result is not straightforward
because the microscopic deformation is non-uniform even in the uni-axial tensile test as in Fig. 3, while
the macroscopically uniform deformation is supposed in the calculation for a small region illustrated in
Fig. 1. This also implies that, from the microscopic point of view, the experimentally measured
properties of composite materials can sometimes be an averaged value, where various types of
microscopic deformation are included. We have to be careful about it, which is known as size-e�ect.

Table 1

The mechanical properties used in the calculation of unidirectional ®ber reinforced composite material

Fiber Matrix

Young's modulus (MPa) 71,540 1470

Poisson's ratio 0.3 0.3

Fig. 7. Macroscopic boundary conditions.
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Fig. 8. Tensile defomation in the transverse direction to the ®bers.
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Fig. 9. In-plane shearing deformation on the ®bers cross-section.
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Fig. 10. Out-plane shearing deformation on the ®bers cross-section.
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Fig. 11. Analyzed large deformation of the microstructure of knitted fabric composite material.
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5. Conclusion

For the numerical simulation of the mechanical behaviors of composite materials with periodic
microstructure under large deformation, the formulation of the homogenization method applied to large
deformation problem was presented. In this formulation, the displacements of both, macroscopic and
microscopic model were de®ned precisely. In the numerical analysis, the microscopic model is updated
at each step with microscopic displacement _U

micro�y� in Eq. (15). By homogenizing the updated
microscopic model in every step, the homogenized mechanical properties are calculated. Using them, the
macroscopic deformation is calculated.

Discussion on the periodicity of the microstructure after large deformation was described through
experimental work for knitted fabric composite material. It was found that the periodicity remains local
enough to apply the proposed homogenization formulation to the general composite materials and
structures.

Finally, numerical examples were shown for unidirectional ®ber reinforced composite material and
knitted fabric composite material. In these analyses, however, we did not consider the material
nonlinearity of ®ber and matrix. Also, only the kinematic change of the knitted architecture (®ber
bundles) was considered. The temperature-dependent viscoelastic material model should be used for the
matrix for the former problem. For the latter problem, three-scale expansion method must be
developed. Moreover, since only one microstructure model is considered in the current examples, more
realistic large deformation problems, which are illustrated in Fig. 1 and in Section 3, are expected to be
solved.

References

Aravas, N., Cheng, C., Ponte Castened, P., 1995. Steady-state creep of ®ber-reinforced composites: constitutive equations and

computational issues. Int. J. Solids Structures 32, 2219±2244.

Babuska, I., 1976. Homogenization approach in engineering. In: Lions, J.L., Glowinski, R. (Eds.), Computing Methods in Applied

Sciences and Engineering, Lecture Note in Economics and Mathematical Systems, vol. 134. Springer±Verlag, Berlin, pp. 137±

153.

Bakhvalov, N., Panasenko, G., 1989. Homogenization: Averaging Processes in Periodic Media. Kluwer, Dordrecht, The

Netherlands.

Bigourdan, B., Chauchot, P., Hassim, A., Lene, F., 1991. Homogenization for the design of cylindrical containers made of

composite materials. In: Baptiste, D. (Ed.), Mechanics and Mechanisms of Damage in Composites and Multi-Materials.

Mechanical Engineering Publications, London, pp. 203±212.

Cioranescu, D., Paulin, J.S.J., 1979. Homogenization in open sets with holes. J. Math. Anal. Appl. 71 (2), 590±607.

Duvaut, G., Nuc, M., 1983. A new method of analysis of composite structure. In: Ninth European Rotor Craft and Powered Lift

Aircraft Forum, Stresa, Italy, Paper No. 88.

Francfort, G., 1983. Homogenization and linear thermoelasticity. SIAM J. Math. Anal. 14, 696±708.

Ghosh, S., Lee, K., Moorthly, S., 1996. Two scale analysis of heterogeneous elastic±plastic materials with asymptotic

homogenization and Voronoi cell ®nite element model. Comput. Methods Appl. Mech. Eng. 132, 63±116.

Gommers, B., Wang, T.K., Verpoest, I., 1995. Mechanical properties of warp knitted fabric reinforced composites. In: Proc. 40th

Int. SAMPE symposium Anaheim, USA, 966±976.

Table 2

The mechanical properties used in the calculation of knitted fabric composite material

Fiber Matrix

Young's modulus (MPa) 71,540 6.86

Poisson's ratio 0.3 0.3

N. Takano et al. / International Journal of Solids and Structures 37 (2000) 6517±65356534



Guedes, J.M., Kikuchi, N., 1990. Preprocessing and postprocessing for materials based on the homogenization method with

adaptive ®nite element method. Comput. Methods Appl. Mech. Eng. 83, 143±198.

Hashin, Z., 1983. Analysis of composite materials. J. Appl. Mech. 50, 481±505.

Jansson, S., 1992. Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic

internal structure. Int. J. Solids Structures 29, 2181±2200.

Kim, J., Lee, J.W., Choi, H.Y., 1995. A study on the structural design and fabrication of composite vehicle door. In: Proc. Int.

Conf. on Composite Mater. 10 (III), Whistler, Canada, 709±716.

Lene, F., Leguillon, D., 1982. Homogenized constitutive law for a partially cohesive composite material. Int. J. Solids Structures

18, 443±458.

Lions, J.L., 1981. Some Methods in the Mathematical Analysis of Systems and Their Control. Science Press, Beijing.

Mayer, J., Hann, J.D., Reber, R., Wintermantel, E., 1998. Knitted carbon ®ber reinforced thermoplastics: an overview. In:

Extended Abstract of First Asian±Australasian Conf. on Composite Mater., Japan, Paper No. 401.

Nishiyabu, K., 1995. Deep drawing of knitted fabric reinforced thermoplastic sheet. In: Proc. 4th Japan Int. SAMPE sympo., 795±

800.

Okada, H., Fukui, Y., Kumazawa, N., Maruyama, T., 1998. A homogenization method for nonlinear materials undergoing large

deformation (1st report, mathematical formulations, which can rigorously satisfy the assumption of periodicity). Trans. Japan

Soc. Mech. Eng. 64 (618), 450±456 (in Japanese).

Ramakrishna, S., Ramaswamy, S., Teoh, S.H., Tan, C.T., 1997a. Development of a knitted fabric reinforced elastomeric composite

intervertebral disc prosthesics. In: Proc. Int. Conf. on Composite Mater. 11(I), Australia, 458±466.

Ramakrishna, S., 1997b. Analysis and modeling of plain knitted fabric reinforced composites. J. Composite Mater. 31 (1), 52±70.

Sanchez-Palencia, E., 1980. Non-homogeneous Media and Vibration Theory. In: Lecture Notes in Physics, vol. 127. Springer±

Verlag, Berlin.

Shkoller, S., Maewal, A., 1996. A model for defective ®brous composites. J. Mech. Phys. Solids 44 (11), 1929±1951.

Takano, N., Zako, M., 1995a. Three-dimensional microstructural design of woven fabric composite material by homogenization

method. In: Proc ASME/JSME Pressure Vessels and Piping Conf. ASME-PVP. 302, 141±146.

Takano, N., Zako, M., 1995b. Nonlinear fracture behavior simulation of textile composites by the homogenization method. In:

Proc. 4th Japan Int. SAMPE Symposium, 700±705.

Takano, N., Zako, M., Heguri, H., Kikuchi, N., 1996a. Homogenization analysis method for composites considering geometrical

nonlinearity and fracture of microstructure. Trans. Japan Soc. Mech. Eng. 62 (595), 859±864 (in Japanese).

Takano, N., Zako, M., Ohnishi, Y., 1996b. Macro±micro uncoupled homogenization procedure for microscopic nonlinear behavior

analysis of composites. Mater. Sci. Res. Int. (Japan Soc. Mater. Sci.) 2 (2), 81±86.

Takano, N., Zako, M., Ohnishi, Y., 1998. Computational analysis of deep-drawing for composite materials considering the

microstructure-proposition of the analytical method. J. Japan Soc. Mater. Sci. 47 (6), 593±598 (in Japanese).

Terada, K., Yuge, K., Kikuchi, N., 1995. Elasto-plastic analysis of composite materials using the homogenization method (1st

report, formulation). Trans. Japan Soc. Mech. Eng. 61 (590), 2199±2205 (in Japanese).

Terada, K., Yuge, K., Kikuchi, N., 1996. Elasto-plastic analysis of composite materials using the homogenization method (2nd

report, numerical analysis). Trans. Japan Soc. Mech. Eng. 62 (601), 2072±2079 (in Japanese).

Terada, K., Ito, T., Kikuchi, N., 1998. Characterization of the mechanical behaviors of solid±¯uid mixture by the homogenization

method. Comput. Methods Appl. Mech. Eng. 153, 233±257.

Wu, X., Ohno, N., 1997. A homogenization theory for rate-dependent deformation of composites with periodic internal structures.

Trans. Japan Soc. Mech. Eng. 63 (613), 1971±1978 (in Japanese).

N. Takano et al. / International Journal of Solids and Structures 37 (2000) 6517±6535 6535


